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-1 ALGORITHM FOR THE INVERSE OF

A HERMITIAN TOEPILTZ MATRIX

INTRODUCTION

The efficient inversion of a given matrix and the related problem of solving a system of linear
equations has been a subject of intense study for many years. The literature on this subject is so vast
that no survey can be exhaustive. For example, a tentative classification and bibliography on solving
systems of linear equations written by Forsythe [I] contains over 400 titles. An excellent handbook on
the various numerical methods of matrix inversion and the solution of linear equations has been writ-
ten by Westlake [2]. Different methods are compared based on such measures of effectiveness as
speed, storage requirements, and convergence rates if applicable.

Numerical methods for matrix inversion and the related problem of solving a system of linear
equations can be divided into two classes: the direct methods and the indirect (iterative) methods.
Direct methods such as Cramer's rule [31, Gaussian elimination [31, and orthogonalization [3-41 yield
an exact solution after a finite number of operations if there is no roundoff error. Iterative methods on
the other hand such as gradient methods [41, the back and forth Seidel [41, and successive overrelation
[51, begin with an approximate solution and obtain an improved solution with each step of the iteration.
The accuracy of the solution depends on the number of iterations performed.

For most direct methods of matrix inversion, the number of arithmetic operations is proportional
to M 3 where M is the row or column dimension of the given square matrix. For iterative methods, the
number of operations per iteration is proportional to M2. In general, the speed of an algorithm if there
is no parallel processing is proportional to the number of arithmetic operations so that this measure can
be used to evaluate the performance of a given algorithm.

A direct procedure for finding the solution of simultaneous linear equations where the multiplying
matrix is Toepiltz was developed by Levinson and presented in Norbert Weiner's book, Extrapolation,
Interpolation, and Smoothing of Stationary Time Series [61. This algorithm takes advantage of the Toepiltz
form to reduce the number of arithmetic operations to be proportional to M2 . This algorithm has been
used by Burg [71 to estimate line spectra in a methodology commonly called maximum entropy spec-
trum analysis (MESA).

This report presents a new direct method for finding the inverse of an M x M hermitian Toepiltz
matrix. An M x M hermitian Toepiltz matrix, H, has the form

ho h, h2 ... h ,_
hi ho h; ... h 2

h2  h, ho ... 4-
H - . . . (1)

hM-! hP4-2 hM-3 .. ho

Manuscript submitted August 16, 1911.
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K. GERLACH

where h0 is always real and * indicates the complex conjugate. Note that it is only necessary to specify
the elements of the first column of a hermitian Toepiltz matrix in order to define the entire matrix.
Therefore, we introduce the shortened notation: if H is an M x M hermitian Toepiltz matrix, then we
write

H - ((h0 , hl. h2.  hm-1)) (2)

where hA, k =- 0, 1,.... M - I are the elements of the first column of H.

We will take advantage of the form of a hermitian Toepiltz matrix and develop new direct
methods for the solution of simultaneous linear equations and the matrix inverse. The basis of these
related algorithms lies in discrete Fouries series theory. Efficient algorithmic procedures are presented
which use the theory of the preceding sections to find the matrix inverse and the solution of simultane-
ous linear equations respectively. We then discuss the software implementation of the matrix inversion
algorithm.

SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS

In this section, we will develop an algorithm for solving for the unknowns of a system of M
independent linear equations. Using this algorithm, we will see in the next section that an algorithm
for obtaining the inverse of a given hermitian Toepiltz matrix can be derived.

Consider the vector equation

1&x= (3)

where H is an M x M nonsingular hermitian Toepiltz matrix, c is an M x I known vector, and . is an
MV x I unknown vector. We desire to find 5c. We use the following approach. Let us define a system
of N = 2M - I independent linear equations as

"p~) " = (4)

where Tim is an M x 1 unknown vector, -dw= e, Xm-I is an (M - I) x I unknown vector, 0 is a zero
filled (M - 1) x 1 vector, and

2

* I
- ---- P , hi, hM 1 M 1 L2 l) 5

M) PI1.

We call a matrix defined by the form seen in Eq. (5) as an up-down hermitian Toepiltz matrix
(UDHTM) because the subscripts of hk seen in Eq, (5) increase and then decrease. We also assume
that PMl is nonsingular. The matrix, PM, as seen in Eqs. (4) and (5) is partitioned as follows: PI(m ) is a
M x Mmatrix, P() is an M x (M - I) matrix, PW) is an (M - 1) x M matrix, and PWM is an
(M - I) x (M - I) matrix. In addition, we can also show that pIP) - Hand thus is hermitian Toe-
piltz and that PI2 is also hermitian Toepiltz. In fact

P(2 " ((h0 , h1, h2.  hm- 2)). (6)21

-1_ _ _ _
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Note that the system of equations defined by Eq. (4) contains (2M - 1) unknowns and has a unique
solution if P~m) is nonsingular. Also note from Eq. (4) that if P14M - H and Zu - then im - .
Thus, if we solve for the unknowns in Eq. (4), we have also solved for i in Eq. (3).

Let us rewrite Eq. (4) as

7CI Q(AIT I (Al) 1 1

----- -- I I(7)
0 Q(1) Q(2) I-

where

Q(A) 12,W)

----- ----- N4 4 Qm(8)

such that Q11I) is an M x M matrix, Q~m" is an M x (M - 1) matrix, Q(Af) is an (M - 1) x M
matrix, and Q2(m) is an (M - 1) x (M - 1) matrix. We show in Appendix A that

QM = F;, A'I (9)

where F,., is the Nth order discrete Fourier series (DFS) matrix defined by Eq. (A6), and A is a diago-
nal matrix whose element, XkA, consists of the Nth order DFS of the sequence (ho, hl, . huI,
hL- 1, h;12 .  hil (the Nth order DFS is defined by Eq. MY) In fact, if

Sj. - SN-I) = DFS tho. h, .  hm-1, hL-1  h (10)

where (so, si, .  SNII, is the sequence that results by finding the DFS of the sequence tho, hi .
hm-1, hA.. 1 .  htl, then

Akk = sk-.I, k - 1, 2,. N. Q11)

It is also shown in Appendix A that if Pul is a UDHTM then Pjj1 or Qu is also a UDHTM. Thus we
see that Q~w can be written

*Hence, it is seen that Q(,)w) and Q2W2m are hermitian Toepiltz matrices with

Q1)- ((go, gl, (1) 03a)

and
Q~)- agNo, gl. 9,W-2))- (13b)

Now, let us rewrite Eq. (7) in the equivalent form as

Tm- 01) E + QW) RM- (14a)

2-1WJ~ + 021?) RM (14b)

3



K. GERLACH

Equation (14b) can be rewritten as

p(Ai-1) R, - - (14c)

where we have defined

- 22 ; CM-,- ,g. (15)

If we had a solution for RM-1 in Eq. (14a), we could find Rm. To find im-1, we use Eq. (14c). How-
ever, PIP-" is a (M - 1) x (M - 1) hermitian Toepiltz matrix and -1 is a derivable (M - 1) x I

vector. Thus, we have reduced the order of the problem from finding an unknown M x 1 vector, RM,

to finding an unknown (M - 1) x I -ector, -m-1, whose multiplying matrix is also hermitian Toepiltz.
Hence, the above procedure is reiterative and must be repeated M - I times with the assumption that

P1.) k - 2. M are nonsingular. On the M - 1 iteration, the equations have the form

R2 = O C F2 + 2 , (16a)
Q(2) e2

-_ Q22)(1 6b)
,22

Note that , and Q22) are now scalars. Thus, no matrix inversion of Q(2) is necessary (it is assumed

Q(22 0). Therefore, xi is known and 3C2 (a 2 x I unknown vector) can be found by using Eq. (16a).

In general, the unknowns, ik, k = 2, 3. M can be obtained by using the forward reiterative for-

mula
-k = Q W ck + Q W ik _- (17)

The constant k x I vector, Fk, k - 2, 3. M can be obtained by using the backward reiterative for-
mula

k-I - Q-"- C. k =M,M- I. 2 (18)

with the final condition that ZjM = . In the discussion of software algorithm for matrix inversion, we

discuss how to obtain the matrix, Qk, k = M, M - I. 2.

TOEPILTZ MATRIX INVERSION ALGORITHM

We can use the algorithm for finding the unknowns of a system of linear equations discussed in

the preceding section to obtain the inverse of a given hermitian Toepiltz matrix. Let us define the
k x k matrix, Ilk , such that

AlkA [P ')- ; k - 2, 3 .... M (19)

and

- 1 -(20)

Note from Eqs. (3), (4), and (19) that (IU - 1t- . Now for k - A, Eq. (14c) implies that

xm " a u'cu. (21)

Equations (21) and (15) imply that

Xm-I -fluM.'eMj m - t M- I Q2 ) Fu - - Iu, Qu-I Q11) " (22)

.. . ... .. .. . "....

..... ... .. e .--" ,d a ,:.M, ,:-
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Therefore, if we substitute Eqs. (21) and (22) into Eq. (17), we obtain

AM - QON - QI2W' aiM- I Q (23)
" (Q1I) - Qi) a4- QO)2 .

Because Z is an arbitrary M x I vector, Eq. (23) implies the following formula:

(M - Qh' = QT) flM- Q1? t . (24a)

Similarly, we can find a formula for (1 - [p(-I])-I . We do this by choosing a new arbitrary
vector, F, of length M- 1. and initiate solving a system of M- I simultaneous equations as we did in
the preceding section. Using equations similar to Eqs. (21) to (23), we would derive an equation
exactly like Eq. (24a) except that the index is M- 1. Hence it is possible to write a reiterative formula

fl - QN" - Q 1" k- I Q2' (24b)

with k = 2, 3. M, and with 0 1 given by Eq. (20). Thus if we reiterate Eq. (24b) M - 1 times,
we obtain H-I = 4u.

SOFTWARE ALGORITHM FOR MATRIX INVERSION

In this section, we present an efficient procedure for obtaining the inverse of a hermitian Toepiltz
by using the methodology described in the preceding sections. To begin with, it is seen from Eqs. (20)
and (24b) that all that is necessary for computing the 11 A matrices, k = 1, 2 .... M are the Qk
matrices. The partitions, Qf, Q', Q2"', and Q)2' can be obtained easily from Q,. Now QA is a
UDHTM, so that all that is necessary to completely specify it is the first column of the matrix (actually
because of the up-down property, just the first M elements of the first column are needed). The matrix
Qk can be found by using the formula

Qk F2,- AA F2k-1; k = 2, 3. M (25)Ok2k - I

where F2k,- is the (2k - 1) order DFS matrix defined by Eq. (A6) and A/ is a diagonal matrix. The
diagonal element, A k, I - 1, 2, ..... 2k - I is found as follows. If

Qk+I- ((go *+ D' g k+1... g .+g, gkl+ i', .. gk+D*)) (26)

and

(S4 k), ssk) - DFS (got), g1+ . gk I), g , ... 91 (27)

then

,$k) - sI..t I); I- 1.2. 2k - I. (2S)

Now in order to generate all Qk, Am must be known. However, the matrix, Am, can be obtained
by using the elements that define Hand Eqs. (10) and (11).

To evaluate Qt, seen in Eq. (25), it is not necessary to perform all of the matrix operations indi-
cated by this equation. In fact, it is straight forward to show (see Appendix A) that

*, DV I ' 1 (29)
(2k- l)k,'f11 ' (2k - I).F ..... (2k - I ,A(&1-

5
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Thus, based upon the preceding discussion, we present the following algorithmic procedure for

finding H- 1 :

A. Set k - M - i,gu""- hi, I - 0, 1. M - 1.
B. Calculate {so ", SIM),  . (A )

B Cca. 2k- I by using Eq. (27).

C. Calculate ((k), gl(), .. , gk_) by using Eqs. (28) and (29).

D. Store (gO*) g .(", & k).

E. k-k-I.

F. GotoBifk > 1.

G. Set fl I- (note -2 2) and k - 2.

H. Set Qk - ((go(*), g(k),... , gkk, -' , ... g W

I. Construct partitions: Qlk), Qk), Q2).

J. flk - 2 k- 21 •

K. k=k+1.

L. Go toHifk < M.

M. H-1= flM

The algorithm can be divided into two parts: the first part (steps A-F) consists of finding the elements
of Qk, k = 2, 3. M, and the second part (steps G-M) calculates through a reiterative formula (step
J) the fl, matrices.

It can be shown that go and silk), I = 0, 1. 2k - 2 are always real. Because of computa-
tional errors, however, these values may have a small imaginary part. It was found that the accuracy of
the matrix inverse, H-1, improved if only the real part of the computed g(ok' or s1 '1 was used in
succeeding steps of the algorithm.

A Fortran computer program listing that implements the matrix inversion algorithm is given in
Appendix B.

SOFTWARE ALGORITHM FOR SOLUTION OF SIMULTANEOUS EQUATIONS

Similar to the preceding section, we present an algorithmic procedure for finding the solution of a

system of simultaneous linear equations as given by Eq. (3) as follows:

A. Set k - M, gilM+l) - h; I - 0, 1, 2, .... M - 1, Fm - F.

B. Calculate (s (k) , s( k) ,  .k)
B C ()... .- by using Eq. (27).

C. Calculate {g0k), gA) ... , gk_ }1 by using Eqs. (28) and (29).

6



NRL REPORT 5539

D. Store (g), ..) . g(A)l.

E. Construct partition Q211 .. by A g(A)}w by using {g(A) , ( S),

F. et-I - - Q#[) c4; store c -I

G. k-k-i.

H. GotoBifk > 1.

I. Set Tel - ?,/g02 ) (note Fi, Z, are scalars) and k - 2.

J. Set Q - ((1oA) , g~A).gtk g- 1..gk-)).

K. Construct partitions: QW), QIW.

L. 7rk Q I() k+ Q lk r 1A.

M. k-k+1.

N. GotoJifk 4 M.

IMPLEMENTATION OF THE MATRIX INVERSION ALGORITHM

The value of any algorithm that is used as a cui, uter library subroutine is determined by such
measures as speed, the amount of computer memory needed, and the amount of hardware necessary to
implement the algorithm. The last two measures can sometimes be traded-off to obtain faster speeds.

For the matrix inversion algorithm, the amount of memory (double words for a complex number)
needed is at most M 2. To see this. we observe from steps A-F that it is necessary to store
M(M - 1)/2 complex numbers. For steps G-M, it is necessary to store at most M2/2 complex
numbers. This results because it can be shown that if fl k = (lM('"), k = 1, 2, M, then

m n (k-m+D)(k-,+l); mn 1. 2. k. (30)

Therefore, only half of the elements of the ) k matrix need to be stored. Since k < M, this number is
a. most M 2/2. Hence, it follows that the maximum memory needed for steps A-M is M 2. Storage
requirements for most matrix inversion algorithms are of the order, M2 [21. Thus there is no advan-
tage in eliminating memory by using the matrix inversion algorithm presented in this report.

A good indication of the speed of an algorithm is the number of multiplications (Xs) that are
necessary to perform the algorithm. Multiplications and divisions that are implemented digitally are
generally much slower operations than the addition, subtraction, loading, and storing operations and
hence may account for the greater portion of the processing time. For steps A-F of the matrix inver-
sion algorithm, the approximate number of Xs is 2M3/3 and for steps G-M the approximate number of
Xs is M 4/4. Hence, the total number of Xs is of the order of M 4. For most direct methods of matrix
inversion the number of Xs is of the order of M 3 [2]. Thus it is seen that the algorithm presented in
this report is comparatively slow at least when implemented in pure software.

There are two other disadvantages associated with this matrix inversion algorithm. First, if the
given hermitian Toepiltz matrix H is singular, the algorithm does not indicate this. Second, if H is

m7
____________________ - - .- ~- - - " - t,



K. GERLACH

nonsingular, the intermediate UDHTMs employed in the algorithm may be singular. In this case, the
algorithm fails. It is possible to determine if an intermediate UDHTM is singular by noting whether
any of the values of A,,, I - 1, 2 ... 2k - 1, calculated in Eq. (28) are zero. If any of these values
are zero, then the given UDHTM is singular and the algorithm fails.

SUMMARY AND CONCLUSIONS

A new method for obtaining the inverse of a hermitian Toepiltz matrix was presented. In addi-
tion, a related technique for finding the solution of the system of linear equations, Hx = , where H is
a hermitian Toepiltz matrix, was developed. Efficient algorithmic procedures for both of these methods
were listed.
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Appendix A
INVERSE OF AN UP-DOWN HERMITIAN TOEPILTZ MATRIX

In this appendix, we derive the inverse of a nonsingular up-down hermitian Toepiltz matrix
(UDHTM). Let A be a N x N UDHTM such that

A = ((a0, a, a am -,, a -I. .a.-2. a]*)) (Al)

where ao is real and N - 2M - I.

The methodology of finding A-' is embedded in discrete-Fourier-series (DFS) analysis. The DFS
periodic convolution theorem [AI] states that if x(k), y(k) and z(k), k = ... -2, -1, 0, 1, 2.
are periodic sequences with a period equal to N and

I- I
z (n) x n)(n - m), (A2)

then

Z(k)= X(k)fI(k) (A3)

where X(k), Y(k), and Z(k) are the Nth order DFSs of x(n), y(n), and :(n) respectively. Recall
that a DFS is defined by the mapping of a sequence, u (n), of length N into a sequence. U(k), through
the transformation

A -

) u(n)14. k = 0. 1, 2. N- I (A4)

where 4' = exp 1- 21rj/Nl , 1 V-. The sequence, u(n), can be found from the inverse transfor-
mation

u(n)= - . U(k) WK'", n = 0. 1, 2. N - 1. (AS)
A-

Let us define Fv to be an N x N matrix such that

FN (fmn) f-n WN - )(n- )" m,n = 1. 2, N. (A6)

The matrix FN will be called the Nth order DFS matrix because we can rewrite Eq. (A4) in matrix nota-
tion as

U- FN (A7)

where U =- (U(O), U(1)..... U(N - 1 ))t, = (u(0), u(1). u(N - 1 )) , and T denotes tran-
spose. The DFS matrix has the property that

1; _ ;. (A8)

N N;

This property can be shown by rewriting the inverse DFS transformation, Eq. (A), in matrix notation

and comparing this to Eq. (A7).

9
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Let us define a periodic sequence y (n), n = 0, 1, 2 . N - I such that

a, n=0,1, M-I
la;-n n= M,M+ 1. N- I. (A9)

It can be shown that Y(k), k - 0. 1 .... N - I are real.

We can now rewrite Eq. (A2) in matrix notation and show that i = A or equivalently

]= A-'i (AIO)

where A is an N x N UDHTM defined by Eq. (Al), = (z(0). z(N - 1 ))T, and . = (x(O).
x(N - l)) . We can also write Eq. (A3) in matrix notation as

2 = Ai (All)

where A is a diagonal matrix with real diagonal elements Xk,, = Y(k - 1), k = 1. N, Z = (Z(0),
... Z(N - 1 ))T, and k = (X(0) ... X(N - ))T. However, we know that Z - F%?and ' = Fx,
so that Eq. (All) can be rewritten as

F8 Y = A F, . (AI2)

If we solve for 3? in Eq. (A12) and use Eq. (A), we find that

x= F, F. (A 13)
N

Subtracting Eq. (A13) from Eq. (A10), we see that

0 [.-L F; tVl F, - A-' . (AM4

Since i can be chosen arbitrarily, this implies that

A L F; A - FN,. (A15)

N

We summarize our result by the following theorem:

Theorem: If A is an N x N UDHTM, then A can be written in the form

A= - A FN
Na

where FN is the Nth order DSF matrix and A is an N x N diagonal matrix with real elements. In addi-
tion, if A is nonsingular, then A -I has the form

- A , N ' F
N

We now prove the following theorem:

Theorem: If A is a nonsingular UDHTM, then A- ' is a UDHTM.

0I

.... ~..-is
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Proof:

Let us derive an individual element of the matrix A-' by using Eq. (A15). By direct calculation,
it can be shown that if A-' - (a,,) m,n - 1. 2. -.. N, then

N-I
amn N X- k+I WN (A16)

We show that A-' is hermitian by using the fact that Xk, k =1, . ..N is real and W -' - W.
Thus

a = A-I w(MnZ)kj

I +I N

NI *A-I

k-0

-amn.

Also, it is readily shown from Eq. (A16) that the diagonal elements (,n~n) are real.

We use the form of Eq. (A16) to show that A 1ik Toepiltz. We see that it is possible to write
et,,in the form (k.mn = f3,, , for all m and n, which is exactly the form of a Toepiltz matrix.

We show that .4- has the up-down property by demonstrating that for the elements in the first
row that

a In=a lt%.-n+2)- (A 17)

We do this as follows:

NlN~2 Y- X A+I W

N-o

-I WA-n~k
-k 0

k-O

-ain.

Hence, the theorem is proved.

We see from Eq. (A 16) that in order to find the elements of the first row of A-', we can write

IVn Y k+1I WV("I)k. (A18)

However, we notice that the form of Eq. (A 18) is that of a DIFS (see Eq. (A4)) except for a scalar fac-
tor of 11N. Hence, to generate the first row of A-', we merely find the Nth order DIFS of the sequence
X -, -',....., X N and divide all elements of the DIFS by N. Therefore, since the first row of a hermi-
tian Toepiltz matrix specifies the entire matrix, we have found a simple method of generating the

blow
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inverse of A- . Firstly, we generate X, X.... -A by calculating the Nth order DFS of the sequence
ao, a1 .... aL_,aL_ 2. a,. Secondly, the first row of A- ' is found by calculating the Nth order DFS
of the sequence X-I ', X,2 . X N1 and then dividing all elements of the DFS by N. Finally, because
A - ' is a hermitian Toepiltz matrix, all other elements of the matrix are specified by elements of the
first row.
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Appendix B
PROGRAM LISTING OF THE MATRIX IN VERSION ALGORITHM

SUB?~iOUTTNE :OEPLZ(h,3AEGA,A,N)

C

C 'EIS SU6dkourU'l i'-i)bS Ta ilV-i Of A 4,~ jj.J5T~j(;U:AF
C HFFMTTAN TOF2i.LTZ i wA-?EX

c (NCE iTO D):.kGC:4L L f, ~ ?4 .

1'= Ili P CA CF C CLUL~ 2 bs D.aElZ

C £ii~Al.GJ)?::-hh :jAz FA:. --I' A . .... ic- ~~.. iT :
J! i 7.N C A LC U.* - 7 ~ ':bLA '~ -m ij7j _r T

1 liI2TA (NS)
L A-, P 1/3. 1413s 2 9/, el a vuu

,-J:!!ALlzE fmAF.ZX OSAs
:1.NITIALIZE 1 NAr.P:-j

DO 300 K=1,M.

3ih) LON7L2NUE
* ?I 1H41

DO '4UJ& K=1 jN
T(C) =CONJG (ii (+2-K,ljI

4JU CONT NUE

L. FINfl SUCCESSIVI DES
DO 5UU ?jMf=l ?.I

BNN2. *jN..1
C COMPUT1 DFS iUrFIX OF O'D~ 6.

DO 600 K=1,NN,
DO 7Uo L=I,NN
AC=COS (I9-1) * CL-1) *Al)

AS=S N (-1 j* (-6-1)*A
F(KL) =ClIPLXtAC AS)

13
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LOU CO)NT:NU.'
.X1 300J -,tN

C k2ND i.)iS OF TP
DO 3 2 UJ i%= N N

DO .33uJ L=1,N4

3 0u CC NTlN U E
Jc uo K= 1, b.

S'I

X) 3'suu lN

.J O Thu 7i

~uJ ? 1 A't~xLM T J U~:L'

i~~~~~~'1 f A.LTAi ?-H

:u CNW:NuE

DO 1'uUi='1.N

*C J "ou ccNK: u
5i.) LONTINUE

DO 13ut0 KZ2,Mfl

1 % 1'.OX % I -&N U

I=0 2.~J 1=,

'IU C NTlOU E

5U 0 CNI:14

L CONUTZ LVEFSFMATRI

LO17 , 9 -.l
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C ?:ND g1l Q'2 Q21

Do 360U K=10~M
DO 370~J L1 li

370U Qll1(K,L)=Q(KL)
360U COTNUE

DO 3t$UO K=1 ,4i
Do 3900 L1,Mrjl

38%)U CONTINUE
DO 4000 K=1,MMI
30 410U L=".Li

41U0 V; I(K, L) =Q(1V +K,t)
40u0 CCNTINU!

C '...JiPUIEiL ES

Do 4200 I=1,!4M1
DO 4300 J= ,N4M

DO 4400 K=I,M?1!
4" Ju ?jC( ) FIC( )+~

&.3UO CINSUNUF
42JU CCNT IN U E

DO 45rO0 :=I,Nm
DO 4600 J=1,

LO 470U IK=1 if A

4600 CCl4TLNU!
45uu CONINUE

DO 480U I=1,f'M
DO 4i0Q J= r..

4800 CONTINUE
12UO CCNTINUE

FR D~N
END




